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Abstract 

How are humans capable of maintaining detailed representations of visual items in 

memory? When required to make fine discriminations, we sometimes implicitly 

differentiate memory representations away from each other to reduce inter-item 

confusion. However, this separation of representations can inadvertently lead memories 

to be recalled as biased away from other memory items, a phenomenon termed 

repulsion bias. Using a non-retinotopically specific working memory paradigm, we found 

stronger repulsion bias with longer working memory delays, but only when items were 

actively maintained. These results suggest that (1) repulsion bias can reflect a 

mnemonic phenomenon, distinct from perceptually driven observations of repulsion 

bias, and (2) mnemonic repulsion bias is ongoing during maintenance and dependent 

on attention to internally maintained memory items. These results support theories of 

working memory where items are represented interdependently and further reveals 

contexts where stronger attention to working memory items during maintenance 

increases repulsion bias between them.  
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General Introduction 

Task-irrelevant information such as the visual similarity between memory items 

(e.g., Golomb, 2015), ensemble statistics (e.g., Brady & Alvarez, 2011), and spatial 

context (e.g., Awh & Jonides, 2001; Jiang, Olson, & Chun, 2000) can all bias how a 

memory item is remembered mere seconds after encoding. It has been argued that 

such biases emerge due to the memory system optimally combining various sources of 

information to increase overall performance (e.g., Carpenter & Schacter, 2017; Guerin, 

Robbins, Gilmore, & Schacter, 2012; Huttenlocher, Hedges, & Vevea, 2000; Newman & 

Lindsay, 2009; Schacter, Guerin, & St. Jacques, 2011; Yoo, Klyszejko, Curtis, & Ma, 

2018). For instance, in a task where you memorize several squares and then report the 

size of a target square that is cued after a blank delay, it might be beneficial for the 

memory system to calculate the average size during encoding. This average size can 

act as a reference point that biases your report towards the average feature when 

uncertain (Brady & Alvarez, 2011). While this would induce systematic biases in 

memory reports throughout the experiment, it could also benefit overall performance in 

terms of absolute error away from the target feature. 

Interestingly, such memory biases can be adaptive both towards and away from 

a reference point. The previous example described memory reports biased towards a 

reference point (i.e., attraction bias), a phenomenon thought to arise from the 

combination of item-level and group-level information, perhaps arising from a Bayesian 

process of combining prior information with an uncertain stimulus (e.g., Brady & 

Alvarez, 2011; Brady, Schacter, & Alvarez, 2018; Hemmer & Steyvers, 2009; 

Huttenlocher et al., 2000). A bias away from a reference point (i.e., repulsion bias) can 
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also be observed. For both attraction and repulsion bias, any task-relevant feature can 

serve as a reference point, encompassing properties such as the feature of a competing 

memory item (e.g., Golomb, 2015), ensemble statistics (Brady & Tenenbaum, 2013; de 

Fockert & Wolfenstein, 2009; Haberman & Whitney, 2009), statistical regularities 

(Honig, Ma, & Fougnie, 2020), subjective category labels (Bae, Olkkonen, Allred, & 

Flombaum, 2015; Huttenlocher, Hedges, & Duncan, 1991), and the perceptual average 

of sequential stimuli (Bae & Luck, 2017; Huang & Sekuler, 2010). 

Repulsion bias could serve to help minimize confusability with a reference point 

by subtly biasing the representation in feature space away from the reference point, and 

is most often observed in tasks that require a few easily confusable items to be 

maintained in fine detail (Bae & Luck, 2017; Chen, Leber, & Golomb, 2019; Golomb, 

2015). For example, if one colored square was light blue and another was dark blue, it 

may be optimal for the memory system to push apart these representations in color 

space to ensure that these squares are not confused with each other. Repulsion bias 

could be implemented in the brain by the neural mechanisms of lateral inhibition 

(Johnson, Simmering, & Buss, 2014; Johnson, Spencer, Luck, & Schöner, 2009; Wei, 

Wang, & Wang, 2012) and/or optimal gain (Navalpakkam & Itti, 2007; Scolari & 

Serences, 2009); we discuss these theories more in the General Discussion.   

Attraction and repulsion bias can be observed in the absence of any mnemonic 

processing. For example, in the direction illusion, subjects estimate the direction of two 

transparent and overlaid random dot patterns and mutual attraction or repulsion is 

observed depending on the relative difference in direction (e.g., Blakemore, Carpenter, 

& Georgeson, 1970; Levinson & Sekuler, 1976; Marshak & Sekuler, 1979; Mather, 



ACTIVE MNEMONIC REPULSION IN WORKING MEMORY 

 4 

1980; Rauber & Treue, 1998; Wiese & Wenderoth, 2007; Yo & Wilson, 1992). Likewise, 

the tilt illusion can perceptually induce repulsion or attraction bias: subjects view an 

oriented grating that is surrounded by another oriented grating, and the center grating is 

perceived to be either repulsed by or attracted to the surrounding grating depending on 

the relative difference in orientation (e.g., Gibson & Radner, 1937; O’Toole & 

Wenderoth, 1977). Direction aftereffects (e.g., Hiris & Blake, 1996; Wenderoth & Wiese, 

2008; Wiese & Wenderoth, 2007) and tilt aftereffects (e.g., Gibson, 1937; Wenderoth & 

Johnstone, 1988) are extensions of these illusions, where visual adaptation induces 

retinotopically specific perceptual biases on subsequent visual input.  

These perceptual illusions might be related to the attraction/repulsion biases 

observed in previous working memory studies. Previous working memory studies have 

used paradigms where items are encoded and tested in the same spatial location, such 

that working memory maintenance might have relied on retinotopically specific, 

sustained sensory activation (Czoschke, Peters, Rahm, Kaiser, & Bledowski, 2019). In 

other words, persistent neural firing in sensory areas after stimulus offset could induce 

visual adaptation effects similar to those observed in the aforementioned perceptual 

illusions.  

In the current study, we first tested whether attraction/repulsion bias can be 

observed mnemonically, in the absence of a purely perceptual explanation, by testing 

for such biases in a non-retinotopically specific working memory paradigm. Specifically, 

we designed an experiment where memory items were encoded and tested in different 

spatial positions. Instead of using simple geometric shapes that are cued based on 

spatial location (e.g., Golomb, 2015) or temporal position (e.g., Bae & Luck, 2017), we 
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used real-world objects that were cued based on object identity (see Figure 1). 

Participants viewed two real-world objects with colors sampled either 45 or 90 degrees 

apart in color space, and then reported the color of the cued object after a short working 

memory delay.  

Using this paradigm, we conducted a series of four preregistered experiments 

aiming to provide a better understanding of how and when working memory 

representations interact with each other. Working memory is capacity-limited (Luck & 

Vogel, 2013), and the canonical theory of working memory capacity is that all items are 

represented independently (Luck & Vogel, 1997; Zhang & Luck, 2008). Mnemonic bias 

provides support for interdependent memory items, in line with more recent theories of 

working memory (e.g., Brady & Alvarez, 2015; Johnson et al., 2014; Oberauer & Lin, 

2017). We tested if mnemonic bias is present independent of perceptual bias, and if so, 

when it emerges, by manipulating the duration and active vs. passive nature of the 

working memory delay. If representations do interact with each other in working 

memory, an important question is when biased representations emerge during the 

stages of encoding, maintenance, and retrieval. We offer three (non-exclusive) 

possibilities. (1) The target memory is biased as soon as or very soon after the study 

array disappeared (i.e., bias during encoding). (2) The target memory becomes biased 

during the working memory delay (i.e., bias during maintenance). (3) The target memory 

becomes biased after the participant is told which memory item needs to be reported 

(i.e., bias during retrieval).  

In Experiments 1-3, all trials had identical encoding and retrieval demands, but 

varied in the duration of the working memory delay. To preview our primary results, we 
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did not observe a credible main effect of repulsion bias with a blank working memory 

delay of 1 second, but we did observe credible repulsion bias with a blank working 

memory delay that was 3 seconds long, suggesting that mnemonic bias can be 

observed independent of perceptual bias, and it emerges during the maintenance 

period. In Experiment 4, we attempted to disambiguate two potential reasons why 

mnemonic bias might emerge over longer delays, asking whether active attention to the 

items in memory during the delay is required. Previous studies have found that working 

memory representations deteriorate over time (Barrouillet & Camos, 2009; Barrouillet, 

De Paepe, & Langerock, 2012; Pertzov, Bays, Joseph, & Husain, 2013; Vergauwe, 

Barrouillet, & Camos, 2009), and poorer quality representations may lead to inter-item 

confusability, prompting the memory system to distinguish the representations in feature 

space (Bae & Luck, 2017; Chunharas, Rademaker, Brady, & Serences, 2019). Thus, 

one might expect repulsion bias to increase with longer memory delays, even – or 

perhaps more so – when people are not actively attending to the items during the delay. 

However, an alternative account predicts that active maintenance of competing 

representations induces repulsion bias over time, and stronger repulsion bias should be 

observed during longer delays only when the items are actively attended during the 

delay. In Experiment 4, we compared a 3 second blank working memory delay (where 

the task was to actively maintain the working memory items) to a 3 second delay that 

involved a separate filler task (attend to something else during the memory delay) to 

disambiguate these accounts, ultimately supporting the active maintenance account, 

allowing us to better inform theories of working memory.  
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Experiment 1: 1-Second Maintenance Duration 

We first tested for memory distortions in a visual working memory experiment 

where memory items were encoded and tested in different spatial positions. We started 

with a 1 second blank working memory delay in Experiment 1, to facilitate comparison 

with more perceptually based working memory studies reporting shift errors (aka feature 

bias, either attraction or repulsion from a non-target feature) and swap errors (reporting 

a non-target feature) (e.g., Golomb, L’Heureux, & Kanwisher, 2014).  

Regarding shift errors, if repulsion and/or attraction bias is observed, this would 

provide initial evidence that such distortions are not retinotopically specific and can be 

attributed to a mnemonic, not a perceptual, explanation. We were also curious whether 

repulsion might be stronger when objects are separated in color space by 45 degrees, 

compared to 90 degrees. The previously discussed perceptual illusions and relational 

representation model claim that the relative difference in feature space is an important 

factor that can influence whether repulsion or attraction bias is observed (e.g., Bae & 

Luck, 2017; O’Toole & Wenderoth, 1977; Wiese & Wenderoth, 2007). We hypothesized 

that, if mnemonic distortions were observed, repulsion bias would be present for the 45 

degree color difference and that either repulsion bias or attraction bias might be present 

for the 90 degree color difference. 

We were also curious whether swap errors (reporting the feature of the non-

target object, also known as “misbindings” or “misassociations”; e.g., Bays, Catalao, & 

Husain, 2009; Bays, Wu, & Husain, 2011) might be observed. It is possible that swap 

errors previously observed in visual working memory experiments (e.g., Chen et al., 
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2019; Dowd & Golomb, 2019; Golomb et al., 2014) were only observed because they 

used perceptually similar stimuli. For example, if a participant needs to memorize the 

colors of two squares, this is an example where the target and the non-target items are 

identical except for the task-relevant color. Swap errors may be less likely to occur if the 

stimuli are two real-world objects, where the objects contain different task-irrelevant 

features (e.g., low-level features such as shape and high-level features such as 

semantic identity).  

 

Methods 

 

Open Practices Statement  

The rationale, method, and parts of the analyses for this and subsequent 

experiments were preregistered at the Open Science Framework (OSF) 

(https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc).  

All analysis code and data are also available on OSF. Any analyses not mentioned in 

the preregistrations are declared as exploratory. Analyses reported in the main text 

deviated from the preregistration in the following ways: (1) We preregistered a specific 

non-hierarchical mixture model and stated that we may instead (or in addition) use a 

hierarchical Bayesian mixture model (HBMM). Because hierarchical Bayesian modeling 

offers substantial advantages over non-hierarchical modeling (Estes, 1956; Heathcote, 

Brown, & Mewhort, 2000; Oberauer, Stoneking, Wabersich, & Lin, 2017), we present 

the HBMM results as our primary focus in the main text, and the non-HBMM model 

results in the Supplement. In making the HBMM, we also deviated partially in the model 



ACTIVE MNEMONIC REPULSION IN WORKING MEMORY 

 9 

parametrization (explained in the Supplement). The two modeling approaches were 

highly consistent in their findings. (2) For experiments 1 and 2, when analyzing shift 

errors separately for the two color-difference conditions (Tables 1 and 2), we made an 

additional simplification to the within-subject HBMM model to make the model fits more 

reliable for this lower-powered analysis. The un-simplified model still showed consistent 

results, reported in the Supplement in Tables S7 and S8. (3) Analyses involving 

confidence reports are presented in the Supplement, and our pre-registered confidence 

analyses within experiments were replaced with a more powerful set of analyses across 

experiments (explained further in the Supplement).  

 

Participants 

Experiment 1 included a preregistered sample size of 50 participants (32 male, 

17 female, 1 non-binary; M=37.32 years, SD=10.51). All participants were recruited 

through Amazon Mechanical Turk (MTurk) and were paid $6 USD per hour (plus bonus 

based on performance) for the experiment, which lasted roughly 1 hour long. All 

participants lived in the United States, held an MTurk approval rating of >=98%, and 

successfully completed over 750 MTurk tasks prior to this experiment. All participants 

reported normal or corrected-to-normal vision, were naive to the purpose of the 

experiment, and provided informed consent in accordance with The Ohio State 

University institutional review board. 10 participants were excluded based on 

preregistered exclusion criteria (>.5 guessing proportion based on a basic, non-

hierarchical mixture model composed of a target and a guessing distribution; see Bays, 

et al., 2009; Golomb et al., 2014; Zhang & Luck, 2008). 
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Stimuli and Procedure 

Experiment 1 was conducted online using MTurk, meaning that monitors could 

vary in size, viewing distance, color calibration, etc. We report stimulus sizes in pixels 

and not degrees of visual angle because of these variable environments. Figure 1 

illustrates an example trial sequence. Each of 14 blocks consisted of 20 trials and 40 

unique real-world objects. On each trial, two 200 x 200 px objects were presented to the 

left and right of a central 15 x 15 px black fixation cross. The center of each object was 

150 px away from the central fixation cross. All stimuli were displayed inside of a 600 x 

600 px white square. Objects were displayed for 1 second, followed by a 200 ms mask 

and then an 800 ms blank interval. The 200 x 200 px mask was composed of 400 10 x 

10 pixels, with each pixel sampling a color randomly drawn from the color wheel. 

Participants were instructed to memorize the colors associated with every object, 

knowing that they would be asked to reproduce the color one of the two objects at the 

end of every trial.  

 

Figure 1. Example trial sequence for Experiment 1. Participants were instructed to memorize the colors of 
both real-world objects. Following a blank interval, participants recreated the original color of one of the 
two objects (randomly selected), cued by presenting the object in the center of the screen in grayscale. 
Objects were displayed in grayscale until mouse movement, at which point the objects color dynamically 
adjusted to match the color closest to the mouse pointer. After clicking to confirm their best guess, 
participants highlighted the smallest range of colors that they believed contained the original color. Every 
test trial ended with general feedback and bonus information. 



ACTIVE MNEMONIC REPULSION IN WORKING MEMORY 

 11 

Object stimuli were acquired from Brady, Konkle, Alvarez, and Oliva (2008). 

Objects were posterized such that pixel values could only be white, black, or a single 

color of interest (one of 360 RGB color values drawn from a circle of 60° radius in CIE 

L*a*b color space, centered at L=70, a=20, and b=38). CIE colors were converted to 

gamma-corrected RGB values, color-calibrated using a Chroma Meter CS-100 on a 

MacBook Pro. Specifically, each image was first converted to grayscale, with luminance 

values ranging from 0 to 255. Pixels with a luminance between 0 and 85 were colored 

white and pixels with a luminance between 170 and 255 were colored black. All other 

pixels were assigned to a color in CIE L*a*b space. Author PS subjectively curated the 

objects such that they remained recognizable, contained a reasonable number of 

colored pixels, were not associated with a canonical color (e.g., no firetrucks because 

their canonical color is red), would not provoke a strong emotional reaction, and were 

categorically distinct from the other objects in the folder (e.g., we would not allow two 

exemplars of an apple). 

Following the 800 ms blank interval, one of the two studied objects was randomly 

selected and displayed in luminance-corrected grayscale on the center of the screen. A 

randomly rotated color wheel (flipped on half the trials) was presented around the 

object. As the mouse moved around the color wheel, the initially grayscale object 

dynamically changed to the color closest to the mouse pointer. Participants were tasked 

with selecting the original color of the object by clicking on the color wheel. Following a 

mouse click to confirm their selected color, participants highlighted the smallest portion 

of the color wheel that they believed contained the original color (see Chen et al., 2019). 

Highlighting involved dragging with the mouse to define the start and end points of a 
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black, highlighted region. This confidence report was our proxy for subjective memory 

strength, with the assumption that a larger highlighted region indicated that a participant 

was less certain about their memory retrieval. Confidence analyses are detailed in the 

Supplemental Material. There was no time limit to respond. Following confidence 

reports, general feedback was presented for 750 ms, followed by a 500 ms blank inter-

trial interval (ITI). 

A monetary bonus was presented during feedback, dependent on the subject’s 

performance. The bonus for each trial was calculated according to (1) degrees of error 

(distance from the subject’s reported color to the correct color) and (2) confidence range 

report. For the bonus calculated based on degrees of error, cents awarded equaled 1 − 

x/45 (where x is absolute degrees of error), such that more fractions of a penny were 

awarded for less degrees of error but nothing was awarded if x >= 45. For the 

confidence range report, cents awarded equaled (360 − y)/359 (where y is the 

confidence range where y=360 is a highlight of the entire color wheel), such that smaller 

ranges awarded more money (the minimum highlighted range was 1 degree). However, 

if the highlighted region did not contain the true original color, then no bonus was 

awarded for this part. The maximum bonus that could be awarded on a trial was 2 cents 

and the minimum bonus was 0 cents. Subjects were informed about how their bonus 

was calculated before starting the experiment. 

On each trial, the colors of one of the two objects was randomly sampled from 

the color wheel, while the other object was equally likely to be sampled 

± 45 or ± 90 degrees away from the other object in color space. Participants were 

uninformed of this color sampling manipulation. A practice block of 5 trials familiarized 
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participants with the procedure. Stimulus presentation was facilitated by a combination 

of HTML, CSS, and JavaScript.  

 

Analyses 

For all experiments, memory response distributions were fit using a hierarchical 

Bayesian mixture model (HBMM) in JAGS (Plummer, 2003); results from a non-

hierarchical model are presented in the Supplement. HBMMs are advantageous 

because they provide accurate group-level and individual-level parameter estimates 

within a single model (Lee & Wagenmakers, 2014). In contrast to HBMMs, more 

traditional approaches to fitting memory response distributions have downfalls. For 

instance, group-level maximum likelihood estimation does not take into account 

individual differences. Meanwhile, individual-level maximum likelihood estimation can 

lead to unreliable estimates, and frequentist statistics on such estimates disregards the 

variability of each individual’s parameter estimates. An advantage of HBMMs is that 

data from all participants in the study can inform individual-level estimates, allowing for 

more robust parameter estimates and increased statistical power without having to 

average data across participants (for more information see Estes, 1956; Heathcote, et 

al., 2000; Oberauer et al., 2017). Analyses for all experiments were supported by an 

allocation of computing resources from the Ohio Supercomputer Center (1987). Please 

see the Supplemental Material for a more complete description of our HBMM and our 

OSF project (https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc) for 

the R and JAGS code for implementing the HBMM.  
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Each trial’s memory response was first converted into an error measurement 

(i.e., the difference between the reported color and the correct color of the target object, 

measured in radians along the color wheel; we later converted from radians to degrees 

when reporting results). The sign of this error measurement was determined relative to 

the non-target object’s color: Error measurements were aligned such that the non-target 

object’s color was always in the positive direction (aligned to +45° or +90° on the color 

wheel). In this way, we could observe a mean shift in the target distribution where 

responses were either towards (attraction) or away from (repulsion) the non-target color.  

Memory response distributions were then fit as a mixture of 3 distributions: a 

target distribution (expressed as Ptarget), a non-target (swap) distribution (Pswap), and 

a random guessing distribution (Pguess). The target distribution was a von Mises 

distribution (equivalent to circular normal distribution) intended to characterize memory 

reports where the subject correctly reported the original color of the target (with some 

room for error, characterized by the concentration parameter). The non-target, or swap, 

distribution, was a von Mises intended to characterize memory reports where the 

subject mistakenly reported the color of the non-target item (Bays et al., 2009; Golomb 

et al., 2014; Scotti, Hong, Leber, & Golomb, 2018). The random guessing distribution 

was characterized by a circular uniform distribution and was intended to characterize 

memory reports where the subject was randomly reporting a color on the color wheel.  

We implemented a similar hierarchical 3-component mixture model as Oberauer 

et al. (2017), but modified it to allow the center of the target distribution to flexibly shift 

up to 15 degrees in either direction, such that we could assess repulsion bias (negative 

shift) or attraction bias (positive shift). Allowing the target distribution to flexibly shift has 
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previously been used in non-hierarchical models to observe subtle attraction or 

repulsion bias (e.g., Chen et al., 2019; Golomb, 2015; Golomb et al., 2014). We 

restricted the target distribution to shift a maximum of +/- 15 degrees because this 

would ensure that non-target responses (45 or 90 deg. from the target color) were not 

accidentally attributed to the target distribution. We also fit separate concentration 

parameters (equivalent to the inverse variance and often called “precision”) to the target 

and swap distributions to allow for the possibility that swap errors may be associated 

with lower precision.  

The HBMM can be described according to its hierarchical levels (in descending 

order): group-level, condition-level, and subject-level. We used a HBMM with only 2 

levels (group-level and subject-level) when testing for overall, group-level effects (e.g., 

overall repulsion bias across subjects) and we used a HBMM with 3 levels when testing 

for condition-level differences (e.g., difference in repulsion magnitude between color-

distance conditions). At each level, there are parameters that define the relative 

proportion of target responses, relative proportion of swap responses, relative 

proportion of random guessing, shift in mean (bias) of the target distribution, and 

precisions of the target and swap distributions. The parameters of the lower levels have 

priors that are based on the respective parameter from the immediate higher level; that 

is, the condition-level has parameters with priors depending on the respective group-

level parameters and the subject-level has parameters with priors from the respective 

condition-level parameters (or group-level for the 2-level model). The full details and 

formulas for our HBMM can be found in the Supplement. 
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For each model fit, we collected 15,000 post-convergence samples and used the 

posterior distributions to compute the maximum a posteriori (MAP) group-level and 

individual-level parameter estimates. In computing the MAP estimate we used 

Silverman’s kernel density estimation (Silverman, 1986) to obtain the mode of the 

posterior distribution. (Note that the PTarget, PGuess, and PSwap parameters summed 

to 1 within each of the 15,000 samples, but they did not always sum to 1 in the reported 

MAP estimates due to this process. The non-hierarchical model results in the 

Supplement report maximum likelihood estimation and do sum to 1, which show 

consistent findings to the HBMM). We verified convergence with the Gelman-Rubin 

convergence diagnostic (Gelman & Rubin, 1992). 

For each parameter, we further use the 15,000 post-convergence samples to 

calculate the 95% highest density interval (HDI). 95% HDIs indicate that the true 

parameter value has a 95% probability of lying within this interval. Values outside the 

intervals may be considered sufficiently implausible (Lindley, 1965). For example, when 

we test for a shift in mean (bias) of the target distribution across all participants, we use 

the group-level parameter Shift. If we find that the 95% HDI does not overlap with zero 

and is entirely negative, we conclude that repulsion bias was credibly observed across 

participants (a non-overlapping positive HDI would be evidence for attraction bias). To 

quantify swap errors, we followed a similar approach using the group-level parameter 

Pswap (proportion of swapping).  

When we test if one condition demonstrated credibly stronger bias or swapping 

than another condition, we use the HBMM with 3 levels. The aforementioned group-

level Shift parameter becomes two separate condition-level parameters, Shift1 and 



ACTIVE MNEMONIC REPULSION IN WORKING MEMORY 

 17 

Shift2, referring to each condition (e.g., trials with 45° color distance use Shift1 and trials 

with 90° color distance use Shift2). We compare the posteriors for these condition-level 

parameters by computing the difference between Shift1 and Shift2 for every sample and 

then calculate the 95% HDI of this difference of posteriors (this approach is hereafter 

referred to as the “within-subject” HBMM). If the resulting HDI does not overlap with 0, 

we consider this to be a credible difference between conditions (Kruschke, 2014).  

In addition to this preregistered HDI approach to assess whether shift and swap 

errors were credibly present, we employed exploratory model comparison to assess the 

contributions of the shift and swap parameters to the model fits. We did this using the 

Widely Applicable Information Criterion (WAIC; Watanabe, 2010), which is computed by 

estimating how well a model fits the input data while penalizing more complex models. 

WAIC was chosen because it is fully Bayesian and was previously observed to be more 

robust than the Deviance Information Criterion (DIC) in similar working memory models 

(Oberauer et al., 2017). WAIC closely approximates Bayesian cross-validation and is 

more stable than DIC because variance is separately computed for each sample and 

then summed, yielding increased stability (Vehtari, Gelman, & Gabry, 2017). To be 

comparable to AIC or DIC, we report WAIC estimates on the deviance scale, such that 

the expected log pointwise predictive density for each sample is multiplied by -2. To 

approximate the uncertainty of WAIC estimates, we calculated the standard error of the 

difference in WAIC values for each sample (WAIC estimation was performed using the 

“loo” R package; Vehtari, Gabry, Yao, & Gelman, 2019). To assess the contribution of 

the Shift parameter, we compared the (full) HBMM model to the same model without a 

flexible target mean by examining the difference in WAIC estimates. If the full model 
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demonstrates a smaller WAIC estimate than the nested model then this suggests that 

the full model better fits the data; that is, the Shift parameter explained nontrivial 

variance in the memory response distribution. We apply the same procedure comparing 

the full model to the analogous model without a swap parameter to assess the 

contribution of the swap parameter. 

 

Results and Discussion 

Model Results: Overall Shift Errors 

We first report overall shift error results before proceeding to shift errors 

dependent on color distance. Figure 2 depicts the raw histogram of memory response 

errors across participants, and Figure 3 depicts the group-level (Shift) and individual-

level estimates for the center (bias) of the target distribution from the hierarchical 

Bayesian mixture model (HBMM). Table 1 depicts the MAP and 95% highest density 

interval (HDI) for group-level parameters. The HDI for the Shift parameter contained 

zero; therefore, we did not find credible evidence for shift errors (repulsion or attraction). 

  

 

Figure 2. Raw histogram of responses across all 50 participants, depicting degrees of error (distance 
between reported color and actual color). Aligned such that the nontarget colors (swap locations) are 
centered at +45 and +90, depicted as vertical black lines. 

 

Repulsion Attraction
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Figure 3. Split violin plot depicts the posterior distribution for the group-level estimate of shift errors (𝑆ℎ𝑖𝑓𝑡) 
in Experiment 1. The interval underneath represents the 95% HDI, which contained zero, meaning that 
we did not have credible evidence to support the presence of shift errors (repulsion or attraction). 

 

All color differences Ptarget Pswap Pguess Shift SDtarget SDswap 

MAP .780 .104 .141 -0.932 23.599 27.446 

HDI2.5 .719 .062 .088 -2.138 21.431 24.257 

HDI97.5 .825 .107 .197 0.229 26.769 30.967 

45° color difference       

MAP .785 .086 .126 -1.665 23.739 23.739 

HDI2.5 .714 .051 .044 -2.930 21.084 21.084 

HDI97.5 .866 .125 .197 -0.418 28.879 28.879 

90° color difference       

MAP .785 .072 .138 -0.301 24.525 24.525 

HDI2.5 .728 .050 .079 -1.699 21.848 21.848 

HDI97.5 .846 .099 .202 0.907 28.752 28.752 
 
Table 1. Group-level parameter estimates for Experiment 1, including the maximum a posteriori (point 
estimate) and the lower and upper bounds of the 95% highest density interval (HDI2.5 and HDI97.5, 
respectively). Ptarget, Pswap, and Pguess refer to the proportion of target, non-target, and random 
guessing responses, respectively. Shift refers to the degrees the target distribution was shifted either 
towards (attraction; positive values) or away from (repulsion; negative values) the non-target color. SDtarget 
and SDswap reflect the Kappa(1) and Kappa(2) parameters (see Supplement), converted to degrees of 
standard deviation. For the separate 45° and 90° color difference models, the standard deviation was 
shared between the target and swap distributions because of otherwise unreliable parameter estimates 
(see Supplement for parameter estimates with separate precision parameters and for non-hierarchical 
parameter estimates). 
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Exploratory model comparison supported the full model compared to the nested 

model that lacked a flexible target mean, as indicated by a smaller WAIC (full model: 

14943.9, nested model: 15261.7; ∆: 317.8, SE: 27.8). While model comparison 

suggested that the Shift parameter was an important addition to the model, we lacked 

evidence for practically meaningful shift errors as indicated by the HDI overlapping with 

zero. One possibility is that shift errors were not consistent across subjects, such that 

the additional parameter improved fits for many individual subject estimates but failed to 

result in a consistent group-level Shift parameter. In other words, allowing the target 

distribution to flexibly shift improved the fit of the model, but the magnitude of this shift 

was not large or consistent enough to be considered credible. 

 

Shift Errors as a Function of Color Distance 

To determine whether shift errors interacted with the color difference between the 

target and non-target objects, we fit a within-subject HBMM with color difference (45°, 

90°) as the within-subject conditions. We observed no credible shift errors in the 90° 

(MAP: -0.30, HDI: [-1.70, 0.91]) condition; however, we did observe credible shift errors 

(repulsion bias) in the 45° condition (MAP:-1.67, HDI: [-2.93, -0.42]).  

The HDI for the difference in Shift posteriors between the two conditions 

overlapped with zero (MAP: 1.33, HDI: [-0.51, 3.05]), so we cannot claim that the 45° 

color difference was associated with credibly more repulsion than the 90° condition. 

That said, the presence of a subtle repulsion bias in the 45° color difference is notable 

in the sense that it demonstrates the capacity for our paradigm to produce shift errors, 

and the direction of the bias (repulsion) was predicted by the relational representation 
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model (Bae & Luck, 2017; see also Golomb, 2015). In addition to shift errors, there were 

also no credible differences between conditions for any of the other model parameters 

(see Table 1 and Supplemental Material). 

 

Swap Errors  

The HDI for the swap parameter, Pswap, did not contain zero (see Table 1), so 

we concluded that swap errors were credibly present in Experiment 1. In addition, 

exploratory model comparison supported the full model compared to the nested model 

that lacked a swap parameter, as indicated by a smaller WAIC (full model: 14943.9, 

nested model: 16579.0; ∆: 1635.1, SE: 72.2). This demonstrates that swap errors can 

be observed with real-world objects and are not restricted to paradigms using 

perceptually similar stimuli (e.g., Chen et al., 2019; Dowd & Golomb, 2019; Golomb et 

al., 2014). 

 

Expt 2: 3-Second Maintenance Duration 

It is possible that we did not observe a main effect of shift errors or interaction 

between shift errors and color distance in Experiment 1 because such memory biases 

reflect a process that builds during the maintenance interval, and a 1-second working 

memory delay was too short for this process to be adequately observed. Other 

experiments have observed attraction/repulsion bias using shorter working memory 

delays (e.g., Bae & Luck, 2017; Chen et al., 2019; Golomb, 2015), but these studies 

used simple geometric shapes and spatial or temporal cueing (any of which could 

explain a shorter time-course for repulsion bias). For Experiment 2, we increased the 
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maintenance duration from 1 second to 3 seconds. In addition to attraction and/or 

repulsion bias, we also hypothesized that swap errors would again be present, and 

might even be larger, with a longer maintenance delay. To preview the results, we 

observed both repulsion bias and swap errors in this experiment (for both color 

distances), and we then directly compared the two maintenance durations using a 

within-subjects manipulation in Experiment 3.  

 

Method 

Like Experiment 1, Experiment 2 included a preregistered 

(https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc) sample size of 

50 participants (28 male, 22 female; M=35.62 years, SD=8.91). 

All participants were recruited using MTurk in the same manner as Experiment 1. 

Two participants were excluded based on the same preregistered exclusion criteria as 

Experiment 1. The stimuli, procedure, and analyses for Experiment 2 were identical to 

Experiment 1 except that the blank interval was increased from 800 ms to 2800 ms (i.e., 

working memory delay increased from 1 s to 3 s). 

 

Results and Discussion 

Model Results: Overall Shift Errors 

With the 3 second working memory delay, credible repulsion bias was observed 

where subjects reported a target color biased slightly away from the non-target color. 

Figure 4 depicts the raw error histogram across participants, and Figure 5 depicts the 

group-level (Shift) and individual-level estimates for the center of the target distribution. 
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(Note that it may be difficult to visually detect shift errors in the raw histogram because 

of the opposing push and pull of repulsion bias and swapping.) Table 2 depicts the MAP 

and 95% HDI for group-level parameters. The HDI for the Shift parameter contained 

only negative values, and exploratory model comparison supported the full model 

compared to the nested model that lacked a flexible target mean, as indicated by a 

smaller WAIC (full model: 20761.0, nested model: 21000.4; ∆: 239.4, SE: 29.4).  

 

Figure 4. Raw histogram of responses across all 50 participants, depicting degrees of error (distance 
between reported color and actual color). Aligned such that the nontarget colors (swap locations) are 
centered at +45 and +90, depicted as vertical black lines. 

 

Figure 5. Split violin plot depicts the posterior distribution for the group-level estimate of shift errors (𝑆ℎ𝑖𝑓𝑡) 
in Experiment 2. The interval underneath represents the 95% HDI, which contained only negative values, 
meaning that repulsion bias was credibly observed. 

Repulsion Attraction
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All color differences Ptarget Pswap Pguess Shift SDtarget SDswap 

MAP .831 .090 .076 -1.994 24.358 33.421 

HDI2.5 .795 .068 .044 -2.793 21.197 25.511 

HDI97..5 .867 .112 .115 -1.084 28.179 82.920 

45° color difference       

MAP .856 .064 .075 -2.778 25.101 25.101 

HDI2.5 .813 .039 .042 -3.661 21.638 21.638 

HDI97..5 .898 .091 .115 -1.621 31.999 31.999 

90° color difference       

MAP .838 .077 .087 -0.944 23.974 23.974 

HDI2.5 .794 .057 .047 -1.708 21.321 21.321 

HDI97..5 .878 .100 .129 -0.026 29.056 29.056 
Table 2. Group-level parameter estimates for Experiment 2. Ptarget, Pswap, and Pguess refer to the 
proportion of target, non-target, and random guessing responses, respectively. Shift refers to the degrees 
the target distribution was shifted either towards (attraction; positive values) or away from (repulsion; 
negative values) the non-target color. SDtarget and SDswap reflect the Kappa(1) and Kappa(2) parameters, 
converted to degrees of standard deviation. For the separate 45° and 90° color difference models, the 
standard deviation was shared between the target and swap distributions because of otherwise unreliable 
parameter estimates (see Supplement for parameter estimates with separate precision parameters and 
for non-hierarchical parameter estimates). 

 

Shift Errors as a Function of Color Distance 

To determine whether shift errors interacted with the color difference between the 

target and non-target objects, we fit a within-subject HBMM with color difference as the 

within-subject conditions. We observed repulsion bias in both the 45° (MAP: -2.78, HDI: 

[-3.66, -1.62]) condition and the 90° condition (MAP: -0.94, HDI: [-1.71, -0.03]).  

The 45° condition produced credibly stronger repulsion bias than the 90° 

condition, as indicated by the HDI for the difference in Shift posteriors not overlapping 

with zero (full: MAP: 1.23, HDI: [0.01, 2.68]; simplified: MAP: 1.77, HDI: [0.43, 3.07]). 

This suggests that the smaller relative difference in color space led to stronger repulsion 

bias, in accordance with the relational representation model (Bae & Luck, 2017; see 

also Golomb, 2015). Even with the relatively larger 90° difference in color space, 

however, repulsion bias was still observed.  
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Swap Errors 

The HDI for the swap parameter, Pswap, did not contain zero (see Table 2), 

suggesting that swap errors were again credibly present in Experiment 2. Exploratory 

model comparison also supported the full model compared to the nested model that 

lacked a swap parameter, as indicated by a smaller WAIC (full model: 20761.0, nested 

model: 22888.4; ∆: 2127.4, SE: 83.8). 

 

Expt 3: 1s vs. 3s Maintenance Duration 

Experiments 1 and 2 suggest that repulsion bias may be modulated by 

maintenance duration, such that a main effect of repulsion bias was found in our 

paradigm with a 3 second, but not a 1 second, maintenance duration. In Experiment 3, 

we test this more directly by recruiting more participants and using a within-subject 

design where the working memory delay could be either 1 second or 3 seconds long on 

a given trial. 

In addition, a within-subject design helped to control for the possible confound of 

participants anticipating the end of the working memory delay. That is, participants 

might not have evenly focused on maintaining the two representations throughout the 

working memory delay if they had prior knowledge of how long the delay would last. A 

within-subject design ensures similar expectation between conditions by randomly 

altering the length of the working memory delay to either a 1- or 3-second duration. 
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Method 

Experiment 3 included a preregistered 

(https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc) sample size of 

81 participants (39 male, 42 female; M=40.22 years, SD=12.19) based on power 

analyses of Experiments 1 and 2. All participants were recruited using MTurk in the 

same manner as Experiments 1-2. Four participants were excluded based on the same 

preregistered exclusion criteria as Experiments 1-2. 

The stimuli, procedure, and analyses for Experiment 3 were identical to 

Experiment 1 except that the working memory delay could be either 1 s or 3 s long (200 

ms mask followed by either 800ms or 2800ms blank interval). Each trial condition 

combination (1s/45° color difference, 1s/90°, 3s/45°, 3s/90°) was presented for 70 trials 

each (280 total trials), with presentation order randomized for each subject. 

 

Results and Discussion 

Model Results: Overall Shift Errors as a Function of Maintenance Duration 

Mirroring the results of the first two experiments, when collapsing across color 

distance, credible repulsion bias was observed in the 3s condition (MAP: -2.34, HDI: [-

3.09, -1.76]) but not the 1s condition (MAP: -0.45, HDI: [-1.01, 0.22]). Table 3 depicts 

the MAP and 95% HDI for group-level parameters, Figure 6 depicts the raw error 

histogram across participants for each condition (as noted above, it may be difficult to 

visually detect shift errors in the raw histogram), and Figure 7 depicts the group-level 

(Shift) and individual-level estimates for the center of the target distribution.  

https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc
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Figure 6. Raw histograms per condition of responses across all 81 participants, depicting degrees of error 
(distance between reported color and actual color). Aligned such that the nontarget colors (swap 
locations) are centered at +45 and +90, depicted as vertical black lines.  

 

Figure 7. Split violin plots depict the posterior distributions for the group-level estimates of shift errors 
(𝑆ℎ𝑖𝑓𝑡) in Experiment 3, split by maintenance duration. The inset depicts the difference of posteriors, 
which did not contain zero, meaning that repulsion bias was credibly larger for the longer maintenance 
duration. 

 

 Ptarget Pswap Pguess Shift SDtarget SDswap 

3 s maintenance  
(all color differences) 

      

MAP .811 .097 .090 -2.343 23.243 27.064 

HDI2.5 .775 .079 .063 -3.090 21.152 23.017 

HDI97..5 .841 .122 .119 -1.761 26.149 33.288 

1 s maintenance 
(all color differences) 

      

Repulsion Attraction
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MAP .836 .092 .075 -0.445 23.196 26.707 

HDI2.5 .806 .075 .052 -1.008 20.740 22.742 

HDI97..5 .860 .112 .096 0.222 26.336 33.476 

3 s maintenance 
(45° color diff.) 

      

MAP .854 .075 .070 -3.119 24.776 24.771 

HDI2.5 .814 .044 .051 -3.967 21.708 18.104 

HDI97..5 .891 .106 .098 -2.010 29.517 66.471 

1 s maintenance 
(45° color diff.) 

      

MAP .850 .090 .059 -0.846 23.056 26.904 

HDI2.5 .814 .064 .017 -1.660 20.413 19.850 

HDI97..5 .892 .118 .092 0.107 27.189 83.020 

3 s maintenance 
(90° color diff.) 

      

MAP .808 .100 .090 -1.389 23.099 24.771 

HDI2.5 .766 .081 .050 -2.209 21.260 18.104 

HDI97..5 .845 .128 .128 -0.558 26.057 66.471 

1 s maintenance 
(90° color diff.) 

      

MAP .842 .087 .069 -0.061 23.462 26.904 

HDI2.5 .810 .069 .034 -0.678 20.834 19.850 

HDI97..5 .878 .108 .102 0.870 27.189 83.020 
Table 3. Group-level parameter estimates for Experiment 3, split by maintenance duration and color 
distance. Ptarget, Pswap, and Pguess refer to the proportion of target, non-target, and random guessing 
responses, respectively. Shift refers to the degrees the target distribution was shifted either towards 
(attraction; positive values) or away from (repulsion; negative values) the non-target color. SDtarget and 
SDswap reflect the Kappa(1) and Kappa(2) parameters, converted to degrees of standard deviation. See 
Supplement for non-hierarchical parameter estimates. 

 

The within-subject HBMM confirmed that repulsion bias was modulated by 

maintenance duration, where repulsion bias was credibly larger with the longer working 

memory delay. There was a credible difference in shift errors between conditions; the 

HDI for the difference in Shift posteriors for the 1 s and 3 s conditions did not overlap 

with zero (MAP: 2.01, HDI: [1.09, 2.88]). 

As was the case in the previous experiments, exploratory model comparison 

supported the full model compared to the nested model that lacked a flexible target 

mean, as indicated by a smaller WAIC (full model: 32428.4, nested model: 32936.2; ∆: 
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507.8, SE: 30.6). This provides additional evidence for repulsion bias, as the model 

provided a better fit when the center of the target distribution was allowed to be biased 

away from the swap distribution. 

 

Shift Errors as a Function of Color Distance 

To determine whether shift errors interacted with the color difference between the 

target and non-target objects, we fit another within-subject HBMM with color difference 

as the within-subject conditions. When collapsing across maintenance duration, we 

observed repulsion bias in both the 45° (MAP: -2.10, HDI: [-2.78, -1.39]) condition and 

the 90° condition (MAP: -0.64, HDI: [-1.27, -0.01]). The HDI for the difference in Shift 

posteriors did not overlap with zero (MAP: 1.41, HDI: [0.51, 2.38]), indicating that the 

45° condition produced credibly stronger repulsion bias than the 90° condition, in line 

with the relational representation model (Bae & Luck, 2017; see also Golomb, 2015) 

and Experiment 2.  

To test for an interaction with maintenance duration, we conducted an 

exploratory analysis where we separately modeled each maintenance duration with 

color difference as the within-subject condition (see Table 3). For the 3 s maintenance 

model, repulsion bias was observed for both the 45° (MAP: -3.12, HDI: [-3.97, -2.01]) 

and 90° (MAP: -1.39, HDI: [-2.21, -0.56]) color difference conditions, with the 45° 

condition producing credibly stronger repulsion bias than the 90° condition (MAP: -1.55, 

HDI: [-2.91, -0.37]). For the 1 s maintenance model, credible repulsion bias was not 

observed for either the 45° (MAP: -0.85, HDI: [-1.66, 0.11]) or the 90° (MAP: -0.06, HDI: 

[-0.68, 0.87]) color difference condition, with no credible difference between conditions 
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(MAP: -0.89, HDI: [-2.03, 0.31]). This suggests that the overall stronger repulsion bias 

for the 45° color difference was likely driven by the 3 s maintenance trials.  

 

Swap Errors 

For both maintenance duration conditions, the HDI for the swap parameter, 

Pswap, did not contain zero (see Table 3), indicating that swap errors were present 

regardless of the maintenance duration. Exploratory model comparison further supports 

this claim, as the full model outperformed the nested model that lacked a swap 

parameter (full model: 32428.4, nested model: 37028.1; ∆: 4599.7, SE: 122.8). The HDI 

for the difference in Pswap posteriors contained zero (MAP: .008, HDI: [-.020, .038]), 

indicating no credible difference in the proportion of swap errors between the 1 s and 3 

s conditions. 

 

Memory Performance 

In an exploratory analysis, we compared the target parameter, Ptarget, between 

maintenance duration conditions to test whether the longer maintenance duration led to 

overall worse performance. The HDI for the difference in Ptarget posteriors overlapped 

with zero (MAP: .019, HDI: [-.018, .068]), indicating no credible difference in the 

proportion of target responses between maintenance duration conditions. The Pguess 

parameter, reflecting random guessing, also showed no credible difference between 

conditions (MAP: .015, HDI: [-.017, .054]). There was also no credible difference 

between conditions for SDtarget (MAP: 3.21, HDI: [-107.78, 107.15]) and SDswap (MAP: -

7.37, HDI: [-125.53, 113.68]). Overall, these exploratory comparisons suggest that the 
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stronger repulsion bias for the 3 s maintenance duration was unlikely to be driven by a 

difference in overall memory performance between conditions. 

 

Expt 4: Filler vs. No-Filler Task 

The results of Experiments 1-3 indicated that repulsion bias is stronger with a 

longer working memory delay. The existence of a repulsion bias in this paradigm 

suggests that repulsion bias is not necessarily retinotopically specific and can be 

attributed to a mnemonic, not a perceptual, explanation. We also demonstrated swap 

errors in all experiments, suggesting that swap errors can be observed with perceptually 

distinct, real-world objects. In Experiment 4, we aimed to better understand why 

increasing maintenance duration leads to greater repulsion bias.  

One hypothesis is that repulsion bias could be explained by an active 

maintenance process; i.e., it could be that repulsion bias occurs as the result of multiple 

representations competing for attention in working memory. The longer time spent 

actively attending to representations during maintenance, the more these 

representations may systematically repel from each other to produce less inter-item 

confusion. This explanation would be in line with the theory of biased competition, 

where representations compete for cortical activity, influenced both by sensory activity 

and top-down attentional biases (Desimone & Duncan, 1995). 

An alternative hypothesis is that repulsion occurs as a function of memory 

degradation. If longer memory delays lead to poorer quality representations (e.g., due to 

passive memory degradation or increased contextual interference; Barrouillet et al., 

2012; Davis & Zhong, 2017; Oberauer & Lewandowsky, 2008), this may prompt the 
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memory system to prioritize other sources of information at recall, such as relational 

information, resulting in increased repulsion bias. That memory degradation might result 

in increased mnemonic bias follows predictions from an ideal (or optimal) observer 

model, that attraction and repulsion biases might be adaptive because they reflect the 

Bayesian procedure of combining uncertain item-level information (i.e. representation of 

the target item’s color) with other available information (Brady et al., 2018; Chunharas et 

al., 2019; Geisler, 2011; Hemmer & Steyvers, 2009; Honig et al., 2020; Huttenlocher et 

al., 2000). Here the other available information (often referred to as group-level 

information or priors) would be about other items in the display, including relational 

information like feature similarity or relative distance in feature space between memory 

items, and the idea is that this group-level information is weighted more heavily when 

the item-level information is less certain; thus, repulsion bias would strengthen as the 

quality of memory representations weakens over time.  

In Experiment 4 we added a filler task presented during the blank interval, 

because it leads to two opposite predictions according to the above active maintenance 

and memory degradation accounts (see Figure 8). Specifically, in Experiment 4, half of 

the trials had a blank delay of 2800 ms and the other half of trials included a filler task 

during the delay period. In this filler task condition, the trials had a blank delay of 800 

ms followed by 2 s to perform a size comparison task between two unique grayscale 

objects (which object has the larger real-world size). If repulsion bias reflects an active 

process during maintenance, then a filler task should interfere with active attention to 

internal representations and result in decreased repulsion bias. If repulsion bias occurs 
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as a function of memory degradation, then a filler task should worsen the quality of 

memory representations and hence increase repulsion bias. 

 

Figure 8. Example trial sequence for Experiment 4. The trial procedure was identical to Experiment 2 
except that half of the trials involved a 2 s size comparison task during the delay, where the subject was 
instructed to click on the grayscale object with the larger real-world size (in this example, the subject 
would click the car). The absolute time between encoding and test was 3 s, regardless of whether the trial 
contained the filler task or not. 

Note that our theoretical accounts operate under the assumption that memory 

items were sufficiently encoded and maintained (actively or passively). In the extreme 

example where a participant is hardly able to recognize items, let alone remember their 

exact color, it may be optimal for the memory system to ignore subtle color differences 

and instead prioritize a gist-based representation (e.g., average color of all memory 

items, which might actually produce attraction bias) or to prioritize one of the two items 

while discarding the other (in the hopes that the discarded item will not be tested). We 

designed our experiments with the aim to provide enough time for participants to 

encode and report the memory items such that always responding around the average 

color, or prioritizing one item and discarding the other item, would be sub-optimal 

strategies. To preview our results, we did not find evidence for attraction bias, and the 

proportion of target responses averaged over 70% in both conditions, suggesting that 

participants sufficiently encoded the memory items (although it is difficult to wholly rule 

out these strategies based on our results). Also note that the bias parameter is tied to 
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the target distribution, such that repulsion/attraction bias is only influencing trials where 

the item is thought to be successfully maintained (according to the HBMM).  

Finally, if we find no difference in repulsion bias between the filler and no-filler 

conditions, it is possible that mnemonic repulsion bias could be explained by a third 

hypothesis, a simple temporal decay explanation. That is, whereas the active account 

predicts reduced repulsion in the filler condition (due to lack of active attention) and the 

degradation account predicts increased repulsion in the filler condition (due to 

decreased memory quality), the temporal decay account suggests that the effect might 

be driven simply by the passage of time, resulting in similar repulsion regardless of the 

filler task. Temporal decay is a major factor in forgetting (Barrouillet & Camos, 2009; 

Barrouillet et al., 2012; Pertzov et al., 2013; Vergauwe et al., 2009), hence it might be 

possible that the longer representations spend in maintenance, the greater the repulsion 

bias. If repulsion bias can be explained by temporal decay, then it should not matter if 

there is a filler task or not during the working memory delay, as long as the absolute 

time between encoding and retrieval is the same between conditions. However, 

temporal decay is a relatively unclear mechanism. For instance, temporal decay is 

correlated with several other cognitive variables including contextual interference, and 

after controlling for these variables it has been suggested that forgetting in working 

memory does not depend at all on temporal decay (Lewandowsky & Oberauer, 2009; 

Oberauer & Kliegl, 2006; Oberauer & Lewandowsky, 2008). Thus, a lack of credible 

difference between the filler and no-filler conditions would not be as conclusive a result 

from a theoretical perspective.  
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Method 

Experiment 4 included a preregistered 

(https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc) sample size of 

81 participants (46 male, 35 female; M=38.28 years, SD=12.58). All participants were 

recruited using MTurk in the same manner as Experiments 1-3. 34 participants were 

excluded based on preregistered exclusion criteria: 4 participants were excluded based 

on the same criteria as Expt 1-3 (>.5 guessing proportion based on a basic mixture 

model), and 30 participants were excluded for not correctly performing the filler task 

(accuracy < 75%; note that because the filler task did not require input, most of these 

excluded participants appeared to ignore the filler task entirely). 

The stimuli, procedure, and analyses for Experiment 4 were identical to 

Experiment 2 except that half the trials contained an intervening filler task during the 

delay (see Figure 5). Each trial condition combination (filler/45° color difference, no-

filler/45°, filler/90°, no-filler/90°) was presented for 70 trials each (280 total trials), with 

presentation order randomized for each subject. The filler task was a size comparison 

task consisting of two unique real-world objects presented above and below the fixation 

cross (150 px away from fixation cross). The objects were the same physical size as the 

memory items (each object was 200 x 200 px), and the task was to indicate which 

object was of the larger real-world size. These objects were grayscale and drawn from a 

separate stimulus set than the objects presented during encoding. Objects were drawn 

from the “Big and Small Objects” dataset (Konkle & Oliva, 2012) and the two displayed 

objects always consisted of one “small” and one “big” object. 

https://osf.io/usrxq/?view_only=6d1f0755173f43b3b6d8e8d161dd7fdc
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We chose this object size comparison task as the filler task because a task 

requiring subjects to meaningfully process other real-world objects should produce 

substantial interference with the real-world objects being held in working memory (Craik, 

2014), allowing us to test whether repulsion bias depends on active maintenance of 

memory representations. We positioned the size comparison stimuli in different spatial 

locations than the initially encoded objects because we were not interested in 

interference from sensory memory or overlapping retinotopic information. 

 

Results and Discussion 

Model Results: Overall Shift Errors as a Function of Filler Task  

Mirroring the results of Experiments 2 and 3, for the 3 second maintenance 

duration, no-filler condition, the HDI for the Shift parameter contained only negative 

values (MAP: -1.60, HDI: [-2.26, -0.93]). For the 3 second filler condition, however, the 

HDI contained zero (MAP: -0.13, HDI: [-0.96, 0.76]). Credible repulsion bias was 

therefore observed in the no-filler condition but not in the filler condition. Table 4 depicts 

the MAP and 95% HDI for group-level parameters, Figure 9 depicts the raw error 

histogram across participants for each condition (as noted above, it may be difficult to 

visually detect shift errors in the raw histogram), and Figure 10 depicts the group-level 

(Shift) and individual-level estimates for the center of the target distribution.  
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Figure 9. Raw histograms per condition of responses across all 81 participants, depicting degrees of error 
(distance between reported color and actual color). Aligned such that the nontarget colors (swap 
locations) are centered at +45 and +90, depicted as vertical black lines.  

 

 

Figure 10. Split violin plots depict the posterior distributions for the group-level estimates of shift errors 
(𝑆ℎ𝑖𝑓𝑡) in Experiment 4, split by condition (no-filler or filler). The inset depicts the difference of posteriors, 
which did not contain zero, meaning that repulsion bias was credibly stronger for trials that did not contain 
a filler task. 

 

 Ptarget Pswap Pguess Shift SDtarget SDswap 

No Filler       

MAP .850 .089 .061 -1.600 24.252 29.477 

HDI2.5 .815 .069 .031 -2.259 22.160 24.737 

HDI97..5 .881 .117 .089 -0.930 27.535 47.416 

Filler       

MAP .720 .197 .085 -0.132 27.220 31.302 

Repulsion Attraction
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HDI2.5 .687 .170 .063 -0.955 24.445 27.300 

HDI97..5 .749 .224 .110 0.759 31.652 38.941 
Table 4. Group-level parameter estimates for Experiment 4, split by condition. Ptarget, Pswap, and 
Pguess refer to the proportion of target, non-target, and random guessing responses, respectively. Shift 
refers to the degrees the target distribution was shifted either towards (attraction; positive values) or away 
from (repulsion; negative values) the non-target color. SDtarget and SDswap reflect the Kappa(1) and 
Kappa(2) parameters, converted to degrees of standard deviation. See Supplement for non-hierarchical 
parameter estimates. 

The within-subject HBMM found that repulsion bias was stronger on no-filler trials 

than filler trials, as indicated by a credible difference in shift errors between conditions. 

The HDI for the difference in Shift posteriors did not overlap with zero (MAP: 1.46, HDI: 

[0.46, 2.63]). This pattern of results supports the idea that repulsion bias reflects an 

active maintenance process, which the filler task interferes with. 

As was the case in the previous experiments, exploratory model comparison 

supported the full model compared to the nested model that lacked a flexible target 

mean, as indicated by a smaller WAIC (full model: 37494.8, nested model: 37771.0; ∆: 

276.2, SE: 23.4). This provides additional support that repulsion bias was credible, as 

the model provided a better fit when the center of the target distribution was allowed to 

be biased away from the swap distribution. 

 

Shift Errors as a Function of Color Distance 

As in previous experiments, we fit another within-subject HBMM with color 

difference as the within-subject conditions. When collapsing across filler and no-filler 

conditions, we observed repulsion bias in the 45° (MAP: -1.95, HDI: [-2.84, -1.22]) 

condition but not the 90° condition (MAP: -0.06, HDI: [-0.82, 0.74]). The HDI for the 

difference in Shift posteriors did not overlap with zero (MAP: 1.98, HDI: [0.83, 3.07]), 

indicating that the 45° condition produced credibly stronger repulsion bias than the 90° 
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condition, in line with the relational representation model (Bae & Luck, 2017; see also 

Golomb, 2015) and Experiments 2 and 3.  

To test for an interaction with no-filler/filler task, we conducted an exploratory 

analysis where we separately modeled filler and no-filler trials, with color difference as 

the within-subject condition (see Supplementary Tables 9-10). For the no-filler model, 

credible repulsion bias was observed for the 45° condition only, with the 45° condition 

producing credibly stronger repulsion bias than the 90° condition. For the filler model, 

credible repulsion bias was not observed for either color difference condition, with no 

credible difference between conditions. This suggests that the overall stronger repulsion 

bias for the 45° color difference was likely driven by the no-filler trials.  

 

Swap Errors 

Swap errors (mistakenly reporting the non-target color) increased in the presence 

of a filler task, as indicated by a credible difference in Pswap between conditions (MAP: 

.104, HDI: [.069, .141]). While the proportion of swap errors was larger on filler trials 

compared to no-filler trials, swap errors were credibly observed in both conditions (see 

Table 4), as indicated by the HDI for both Pswap1 (group-level swap parameter for no-

filler condition) and Pswap2 (group-level swap parameter for filler condition) not 

containing zero. Exploratory model comparison supported that swap errors were 

credibly observed, as the full model outperformed the nested model that lacked a swap 

parameter (full model: 37494.8, nested model: 43921.6; ∆: 6426.8, SE: 151.4). 

 

Memory Performance 
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In an exploratory analysis, we compared model parameter estimates between 

no-filler/filler conditions to test whether the filler task led to overall worse performance 

(see Table 4). As expected, filler task trials led to worsened memory performance as 

indicated by a decreased proportion of target responses. The HDI for the difference in 

Ptarget posteriors did not overlap with zero (MAP: .130, HDI: [.086, .178]), indicating a 

credible difference in the proportion of target responses between conditions. Meanwhile, 

the Pguess parameter, reflecting random guessing, showed no credible difference 

between conditions (MAP: .024, HDI: [-.011, .062]), though there was an increase in 

swap errors, as reported above. There was no credible difference between conditions 

for either SD measure: SDtarget (MAP: 72.12, HDI: [-23.38, 154.33]) and SDswap (MAP: 

19.73, HDI: [-116.50, 110.25]).  

 

Summary 

Stronger repulsion bias was observed on trials without a filler task compared to 

trials with a filler task, supporting the idea that repulsion bias reflected an active 

maintenance process. Combined with the results of Experiment 3, repulsion bias seems 

to occur as the result of multiple memory representations competing for attention. 

Conversely, swap errors were observed more often on trials with a filler task than trials 

without a filler task, following the consensus that spatial attention is crucial for object-

feature integrity (e.g., Dowd & Golomb, 2019; Emrich & Ferber, 2012; Robertson, 2003; 

Treisman & Schmidt, 1982; Vul & Rich, 2010).  

 



ACTIVE MNEMONIC REPULSION IN WORKING MEMORY 

 41 

General Discussion 

The main contribution of this paper is that repulsion bias strengthened with 

longer working memory delays, but only when items were actively maintained. 

Repulsion bias reflects the subtle misremembering of a target memory item as more 

dissimilar to a reference point than it is in reality, likely in an attempt to better 

differentiate items by the memory system (Bae & Luck, 2017; Chunharas et al., 2019; 

Golomb, 2015). The process underlying repulsion bias was found to occur during 

maintenance in a non-retinotopically specific experimental design, suggesting that 

repulsion bias can occur mnemonically (that is, in the absence of a perceptual 

explanation). Moreover, Experiment 4 revealed that a filler task during the working 

memory delay could disrupt the effect, suggesting that this mnemonic repulsion bias is 

an active process. Below we discuss the neural mechanisms and psychological theories 

that could potentially support this finding of active mnemonic repulsion bias.  

 

Neural Mechanisms of Repulsion Bias 

Repulsion bias (perceptual and/or mnemonic) has generally been explained by 

the underlying neural mechanisms of lateral inhibition or optimal gain. According to 

lateral inhibition explanations, object features (like color) may be represented in a map-

like way such that neighboring neurons code neighboring parts of feature space, and 

lateral inhibitory connections between them help sharpen feature representations. Thus, 

if the features of an attended working memory object are similar to the features of 

another working memory object, such that their representations are coded with nearby 

neurons, these neurons may inhibit each other. As a result, neurons representing this 
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similar region of feature space become relatively suppressed, which effectively results 

in both feature representations becoming biased away from each other, and repulsion 

bias is observed (Johnson et al., 2009; Wei et al., 2012).  

Such theories of lateral inhibition have sometimes been explained within the 

framework of dynamic field theory (or more generally, continuous-attractor neural 

network models: Amari, 1977; Wilson & Cowan, 1972), where recurrent interactions 

explain how neural projections are capable of sustaining themselves even in the 

absence of sustained perceptual input, providing a possible neural explanation for 

active working memory maintenance (Johnson et al., 2014; Schutte & Spencer, 2009; 

Simmering & Spencer, 2008; Simmering, Spencer, & Schöner, 2006; Spencer, 

Simmering, Schutte, & Schöner, 2007). Specifically, dynamic field theory has been used 

to explain evidence of delay-dependent repulsion bias in spatial working memory tasks 

(e.g., Simmering & Spencer, 2008) and therefore may generalize to our present 

observations of delay-dependent repulsion bias in non-spatial visual working memory.  

Whereas theories of lateral inhibition (specifically dynamic field theory) support 

an active process of visual working memory maintenance, the optimal gain account 

makes no distinction between active and passive processing. Optimal gain theory 

asserts that when a target and non-target are highly similar, the optimal behavior is to 

increase the salience of the target relative to the non-target. From a single neuron 

perspective, this means that enhancing the response of neurons that are tuned slightly 

away from the target (in the direction away from the non-target) can maximize the 

signal-to-noise ratio between the target and the non-target, enabling better 

discrimination (Navalpakkam & Itti, 2007; Scolari & Serences, 2009).  
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Optimal gain theory could support the active maintenance account by suggesting 

that focused attention to the memory items during a delay allows for increasingly more 

precise tuning to maximize the signal-to-noise ratio. But optimal gain theory could also 

support a memory degradation account since the optimal behavior may be that tuning 

should become more exaggerated when there is interrupted attention, such that 

increased enhancement of neurons tuned away from the non-target item prevents 

interitem confusion during a lapse of attention. Optimal gain may occur in combination 

with lateral inhibition to support behavioral evidence of repulsion bias.  

Independent of the lateral inhibition vs optimal gain mechanisms, a recent study 

using human EEG observed neural evidence consistent with active memory 

mechanisms. Sutterer, Foster, Adam, Vogel, and Awh (2019) found that the selectivity 

of population-level tuning functions decreased with 2 items in maintenance compared 

with 1 item. They then used data-driven simulations to conclude that a working memory 

model where two items can be simultaneously active is better supported as opposed to 

models where two items are maintained by rapidly switching between single-item active 

states or by keeping one item in the focus of attention while others are relegated to a 

passive long-term memory store. If multiple memory items can be concurrently active in 

working memory then this would be consistent with the above active maintenance 

mechanisms and could suggest that neuroimaging investigations of repulsion bias might 

allow us to further explore the “active” nature of the active maintenance account. 
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Psychological Theories of Repulsion Bias 

Our findings also speak to several psychological theories of repulsion bias, 

including a low-level perceptual account, theories of working memory interdependence, 

and an ideal observer model. These psychological theories could be implemented by 

the above neurobiological accounts of repulsion bias; the psychological theories are not 

meant to be in opposition to the neural explanations. We first rule out a purely 

perceptual account, concluding that repulsion bias observed across our experiments 

reflected a mnemonic phenomenon. We then consider how some canonical theories of 

working memory that assume that memory items are stored independently are 

inconsistent with our results. Finally, we discuss whether mnemonic repulsion bias 

might reflect Bayesian-like behavior in accordance with an ideal observer model.  

 

Perceptual account 

Our first goal was to test a low-level perceptual account for repulsion bias. As 

explained in the introduction, repulsion bias can be observed in the absence of 

mnemonic processing in the case of the direction and tilt illusions (e.g., Gibson & 

Radner, 1937; Wiese & Wenderoth, 2007). These illusions can then be extended to 

working memory designs in the case of direction aftereffects and tilt aftereffects, where 

visual adaptation induces retinotopically specific perceptual biases on subsequent 

visual input (e.g., Gibson, 1937; Hiris & Blake, 1996; Wenderoth & Johnstone, 1988; 

Wenderoth & Wiese, 2008; Wiese & Wenderoth, 2007). An open question was whether 

such perceptual mechanisms might account for the repulsion biases observed in visual 

working memory experiments.  
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Our experiments are the first to demonstrate repulsion bias using a non-

retinotopically specific working memory design, which rules out a purely perceptual 

explanation. Moreover, we observed differences in repulsion bias between conditions 

with identical layout and encoding demands, that only differed in terms of the 

maintenance process. The mnemonic repulsion bias observed in the present 

experiments is thus distinct from the above observations of perceptual repulsion bias. 

As such, the psychological theories discussed in more detail below focus on mnemonic, 

not perceptual, interactions.  

 

Working memory interdependence 

 Several influential models of visual working memory, including slot models (e.g., 

Luck & Vogel, 1997; Zhang & Luck, 2008) and resource models (e.g., Bays & Husain, 

2008), contend that memory items are stored independently. More recently, these 

models have been disputed in favor of non-independent working memory storage (e.g., 

Brady & Alvarez, 2015; Johnson et al., 2014; Oberauer & Lin, 2017). For instance, 

statistical regularities in regard to prior stimulus distributions and spatial context can 

bias working memory reports (Huang & Sekuler, 2010; Jiang et al., 2000). 

Hypothetically, humans could have an independent memory system where biases occur 

at decision-making, but our results support the interdependence of memory items 

because we observed biases in behavior dependent on the duration of a blank retention 

interval and whether items were actively attended to during this interval. This does not 

preclude additional biases potentially being involved at decision-making.  
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Ideal observer model 

The ideal observer model is a general theoretical framework (Geisler, 2011) that 

has been applied to mnemonic repulsion bias and intuits that subjects adaptively 

combine group-level (or gist) information (e.g., color of non-target items, ensemble 

statistics, spatial context, or learned “priors”) with item-level information about the target 

object (Brady et al., 2018; Hemmer & Steyvers, 2009; Huttenlocher et al., 2000) to 

optimize performance, given the limited capacity of visual working memory (Luck & 

Vogel, 1997; Zhang & Luck, 2008). The ideal observer model could provide a 

parsimonious explanation with the conclusion of Chunharas et al. (2019)—that repulsion 

bias is an adaptive process that is stronger with shorter encoding durations and longer 

maintenance durations—if we consider the relational information (aka feature similarity) 

of memory items to be an important group-level feature. Shorter encoding durations and 

longer maintenance durations should both weaken (item-level) memory strength, and it 

was in these conditions that Chunharas et al. (2019) observed the strongest repulsion 

bias (i.e., relational information was relied on by the memory system more in these task 

conditions).  

At first glance, our current results are not consistent with this interpretation of the 

ideal observer model. In Experiment 4, we observed that repulsion bias was stronger in 

the condition where the item-level evidence (memory strength as indicated by an 

increased proportion of target responses) was also stronger. Further, when we used 

confidence range reports as a proxy for memory strength, we did not observe any 

association between confidence and the magnitude of repulsion bias (although the 

confidence reports may not have been sensitive enough to detect a difference, see 
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Supplement), whereas the ideal observer model would predict that highly confident 

memory reports should be associated with weaker repulsion bias (as in Honig et al. 

(2020), where they demonstrate how an ideal observer model can explain how 

participant uncertainty correlated with attraction bias). 

If we consider a few restrictions on the ideal observer model, however, then this 

theory could still provide a valid explanation for active mnemonic repulsion bias. In other 

words, perhaps relational information might only be relied on under certain 

circumstances; for instance, when working memory items are (1) sufficiently encoded, (2) 

easily confusable or not easily individuated, and (3) actively attended. If these conditions 

are all met, then weakened memory strength should be associated with increased 

repulsion bias, in line with the ideal observer model. Indeed, in an exploratory analysis 

where we only included trials where responses were reasonably correct (<30 degrees 

away from the target color), there was a significant negative correlation between repulsion 

bias and confidence (see Supplement). However, if any of those three conditions are not 

met, then a more suitable prior to rely on might be gist information (aka ensemble statistic, 

average feature), in which case repulsion errors would be less likely to be observed. As 

an example, given two similar blue-green objects that are sufficiently encoded and 

actively attended, active mnemonic processing separates the colors away from each 

other to reduce confusability (repulsion bias); however, if the two blue-green objects are 

not sufficiently encoded or maintained, you may only remember “cool” colors and hence 

select a medium blue-green color (attraction bias).   
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Additional Considerations 

While some prior studies have used a non-target item as a reference point (e.g., 

Chunharas et al., 2019; Czoschke et al., 2019), several other studies have used 

hierarchical properties like the ensemble statistic (e.g., Brady & Alvarez, 2011) or the 

average color observed across all past trials (e.g., Huang & Sekuler, 2010). We note 

that our results could differ depending on what property the memory system uses as the 

reference point for repulsion bias because hierarchical properties may be automatically 

computed and take up space in memory independently from concurrently maintained 

memory items (for discussion see Brady, Konkle, & Alvarez, 2011). Results could also 

differ if more than two items need to be maintained or if items must be transferred into 

long-term memory. 

Another interesting question is whether the swap distribution is biased similarly to 

the target distribution. In theory, a swap represents object-feature misbinding such that 

the participant may be reporting the successfully maintained non-target item. In this 

case, we would expect to observe repulsion bias for the swapped non-target in addition 

to our present observation of repulsion bias for the target item (i.e., both items repulsed 

away from each other during maintenance). On the other hand, it is possible that swap 

trials indicate that maintenance was not as successful as trials where items were 

correctly reported, and since we conclude that successful encoding and active attention 

are necessary components to repulsion bias, perhaps such a bias is not as strong or is 

not present for swap trials. It is difficult to test for a bias in the swap distribution with the 

present data due to an insufficient number of swap trials, but future work could explore 



ACTIVE MNEMONIC REPULSION IN WORKING MEMORY 

 49 

this research question by prompting color reports for both memory items and/or 

manipulating the paradigm to encourage more swap errors.     

It is also important to consider that the present experiments are the first 

demonstration of repulsion bias using real-world objects. One could have argued that 

repulsion bias would only be expected if objects shared similar perceptual features 

(e.g., memory items are two similarly colored squares). Our observation of credible 

repulsion bias using perceptually distinct, real-world objects suggests that repulsion bias 

is robust to more realistic situations and to a large assortment of visual stimuli. 

 

Context of the Research 

This research stems from work in visual working memory that observed attraction 

and repulsion bias dependent on inter-item similarity (e.g., Bae & Luck, 2017; Golomb, 

2015) and work in the perception domain (specifically tilt and direction aftereffects) that 

elicited similar attraction and repulsion biases (e.g., Gibson, 1937; Hiris & Blake, 1996; 

Wenderoth & Johnstone, 1988; Wenderoth & Wiese, 2008; Wiese & Wenderoth, 2007). 

Recent papers from our research group also observed repulsion and attraction biases in 

long-term memory using real-world stimuli (Scotti et al., 2018) as well as biased feature 

perception during dynamic spatial attention contexts such as attentional capture (Chen 

et al., 2019) and remapping across eye movements (Golomb et al., 2014). The 

similarities observed across domains prompted theoretical discussion regarding 

whether similar mechanisms account for these phenomena, and more generally, the 

functional role and implications of memory biases for models of working memory. There 

are several directions for future research related to the present work, including 
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behavioral investigations to understand the contexts where repulsion bias is observed 

and neuroimaging investigations to potentially observe an active representational bias 

without reliance on behavioral input. 

 

Conclusions 

The present results raise important questions regarding the nature of working 

memory maintenance. We first demonstrate that repulsion bias in visual working 

memory can be observed in the absence of any perceptual explanation. We then report 

the somewhat counterintuitive idea that improved attention to working memory items 

during maintenance can result in stronger repulsion bias. This observation that 

repulsion bias in working memory reflects an active process ongoing during 

maintenance supports theories of working memory that assert that representations are 

interdependent (e.g., Brady & Alvarez, 2015; Oberauer & Lin, 2017), adding that these 

dependencies can produce systematic biases as the result of competing mnemonic 

representations. 
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